C2 Trigonometry

1. June 2010 qu. 5

The diagram shows two congruent triangles, *BCD* and *BAE*, where *ABC* is a straight line. In triangle *BCD*, *BD* = 8 cm, *CD* = 11 cm and angle *CBD* = 65° . The points *E* and *D* are joined by an arc of a circle with centre *B* and radius 8 cm.

- (i) Find angle *BCD*. [2]
- (ii) (a) Show that angle *EBD* is 0.873 radians, correct to 3 significant figures. [2]
 - (b) Hence find the area of the shaded segment bounded by the chord *ED* and the arc *ED*, giving your answer correct to 3 significant figures. [4]

2. June 2010 qu.7

(i) Show that
$$\frac{\sin^2 x - \cos^2 x}{1 - \sin^2 x} \equiv \tan^2 x - 1.$$
 [2]

(ii) Hence solve the equation
$$\frac{\sin^2 x - \cos^2 x}{1 - \sin^2 x} = 5 - \tan x, \quad \text{for } 0^\circ \le x \le 360^\circ.$$
 [6]

3. Jan 2010 qu.1

- (i) Show that the equation $2 \sin^2 x = 5 \cos x 1$ can be expressed in the form $2 \cos^2 x + 5 \cos x - 3 = 0.$ [2] (ii) Hence solve the equation $2 \sin^2 x = 5 \cos x - 1,$ giving all values of x between 0° and 360°. [4]
- 4. Jan 2010 qu.7

The diagram shows triangle *ABC*, with AB = 10 cm, BC = 13 cm and CA = 14 cm. *E* and *F* are points on *AB* and *AC* respectively such that AE = AF = 4 cm. The sector *AEF* of a circle with centre *A* is removed to leave the shaded region *EBCF*.

(i)	Show that angle <i>CAB</i> is 1.10 radians, correct to 3 significant figures.	[2]	
(ii)	Find the perimeter of the shaded region <i>EBCF</i> .	[3]	
(iii)	Find the area of the shaded region <i>EBCF</i> .	[5]	
June 2009 qu.1 The lengths of the three sides of a triangle are 6.4 cm, 7.0 cm and 11.3 cm.			
(i)	Find the largest angle in the triangle.	[3]	

(ii) Find the area of the triangle. [2]

6. June 2009 qu.5

5.

Solve each of the following equations for $0^{\circ} \le x \le 180^{\circ}$.

- (i) $\sin 2x = 0.5$ [3] (ii) $2\sin^2 x = 2 \sqrt{3}\cos x$ [5]
- 7. June 2009 qu.8

Fig. 1 shows a sector *AOB* of a circle, centre *O* and radius *OA*. The angle *AOB* is 1.2 radians and the area of the sector is 60 cm^2 .

(i) Find the perimeter of the sector.

[4]

A pattern on a T-shirt, the start of which is shown in Fig. 2, consists of a sequence of similar sectors. The first sector in the pattern is sector *AOB* from Fig. 1, and the area of each successive sector is $\frac{3}{5}$ of the area of the previous one.

(ii)	(a)	Find the area of the fifth sector in the pattern.	[2]
	(b)	Find the total area of the first ten sectors in the pattern.	[2]
	(c)	Explain why the total area will never exceed a certain limit, no matter how many sectors are used, and state the value of this limit.	[3]

8. Jan 2009 qu.2

The diagram shows a sector *OAB* of a circle, centre *O* and radius 7 cm. The angle *AOB* is 140°.

- (i) Express 140° in radians, giving your answer in an exact form as simply as possible. [2]
- (ii) Find the perimeter of the segment shaded in the diagram, giving your answer correct to 3 significant figures. [4]
- **9.** Jan 2009 qu.5

Some walkers see a tower, T, in the distance and want to know how far away it is. They take a bearing from a point A and then walk for 50m in a straight line before taking another bearing from a point B.

They find that angle TAB is 70° and angle TBA is 107° (see diagram).

(i)	Find the distance of the tower from A.	[2]
(ii)	They continue walking in the same direction for another 100m to a point <i>C</i> , so that AC is 150 m. What is the distance of the tower from <i>C</i> ?	[3]
(iii)	Find the shortest distance of the walkers from the tower as they walk from A to C .	[2]

10. Jan 2009 qu.9

(i) The polynomial f(x) is defined by f(x) = x³ - x² - 3x + 3.
Show that x = 1 is a root of the equation f(x) = 0, and hence find the other two roots. [6]

[6]

(ii) Hence solve the equation $\tan^3 x - \tan^2 x - 3 \tan x + 3 = 0$

for $0 \le x \le 2\pi$. Give each solution for *x* in an exact form.

11. June 2008 qu.3

The diagram shows a sector AOB of a circle with centre O and radius 8 cm. The area of the sector is 48 cm².

- (i) Find angle *AOB*, giving your answer in radians. [2]
- (ii) Find the area of the segment bounded by the arc *AB* and the chord *AB*. [3]
- 12. June 2008 qu.6

In the diagram, a lifeboat station is at point A. A distress call is received and the lifeboat travels 15 km on a bearing of 030° to point B. A second call is received and the lifeboat then travels 27 km on a bearing of 110° to arrive at point C. The lifeboat then travels back to the station at A.

- (i) Show that angle ABC is 100°. [1]
- (ii) Find the distance that the lifeboat has to travel to get from *C* back to *A*. [2]
- (iii) Find the bearing on which the lifeboat has to travel to get from C to A. [4]

13. <u>June 2008 qu.9</u>

~ 1

(a)	(1)	Show that the equation	$2\sin x \tan x - 5 = \cos x$	
		can be expressed in the form	$3\cos^2 x + 5\cos x - 2 = 0.$	[3]

(ii) Hence solve the equation $2 \sin x \tan x - 5 = \cos x$,

giving all values of *x*, in radians, for $0 \le x \le 2\pi$. [4]

(b) Use the trapezium rule, with four strips each of width 0.25, to find an approximate value for $\int_0^1 \cos x \, dx$, where x is in radians. Give your answer correct to 3 significant figures.

[4]

[2]

14. Jan 2008 qu.1

The diagram shows a sector *AOB* of a circle with centre *O* and radius 11 cm. The angle *AOB* is 0.7 radians. Find the area of the segment shaded in the diagram. [4]

15. Jan 2008 qu.4

In the diagram, angle $BDC = 50^{\circ}$ and angle $BCD = 62^{\circ}$. It is given that AB = 10 cm, AD = 20 cm and BC = 16 cm.

- (i) Find the length of *BD*. [2] (ii) Find angle *BAD*. [3]
- 16. Jan 2008 qu.9
 - (i) Fig. 1 shows the curve $y = 2 \sin x$ for values of x such that $-180^\circ \le x \le 180^\circ$. State the coordinates of the maximum and minimum points on this part of the curve.

Fig. 2 shows the curve $y = 2 \sin x$ and the line y = k. The smallest positive solution of the equation $2 \sin x = k$ is denoted by α . State, in terms of α , and in the range $-180^{\circ} \le x \le 180^{\circ}$,

- (a) another solution of the equation $2 \sin x = k$, [1]
- (b) one solution of the equation $2 \sin x = -k$. [1]

[6]

[6]

- (iii) Find the *x*-coordinates of the points where the curve $y = 2 \sin x$ intersects the curve $y = 2 3\cos^2 x$, for values of *x* such that $-180^\circ \le x \le 180^\circ$.
- 17. June 2007 qu.5
 - (i) Show that the equation $3\cos^2 \theta = \sin \theta + 1$ can be expressed in the form $3\sin^2 \theta + \sin \theta - 2 = 0.$ [2]
 - (ii) Hence solve the equation $3\cos^2 \theta = \sin \theta + 1$, giving all values of θ between 0° and 360°. [5]
- **18.** <u>June 2007 qu.8</u>

The diagram shows a triangle ABC, where angle BAC is 0.9 radians. BAD is a sector of the circle with centre A and radius AB.

- (i) The area of the sector BAD is 16.2 cm². Show that the length of AB is 6 cm. [2]
- (ii) The area of triangle ABC is twice the area of sector BAD. Find the length of AC. [3]
- (iii) Find the perimeter of the region *BCD*.

19. <u>Jan 2007 qu.2</u>

The diagram shows a sector OAB of a circle, centre O and

radius 8 cm. The angle AOB is 46 .

	(i)	Express 46° in radians, correct to 3 significant figures.	[2]	
	(ii)	Find the length of the arc <i>AB</i> .	[1]	
	(iii)	Find the area of the sector <i>OAB</i> .	[2]	
20.	<u>Jan 2</u> In a t	<u>qu.4</u> riangle <i>ABC</i> , $AB = 5\sqrt{2}$ cm, $BC = 8$ cm and angle $B = 60^{\circ}$.		
	(i)	Find the exact area of the triangle, giving your answer as simply as possible.	[3]	
	(ii)	Find the length of AC , correct to 3 significant figures.	[3]	
21.	Jan 2007 qu.7			
	(i)	(a) Sketch the graph of $y = 2 \cos x$ for values of x such that $0^\circ \le x \le 360^\circ$, indicating the coordinates of any points where the curve meets the axes.	[2]	
		(b) Solve the equation $2 \cos x = 0.8$, giving all values of x between 0° and 360° .	[3]	
	(ii)	Solve the equation $2 \cos x = \sin x$, giving all values of x between -180° and 180° .	[3]	
22.	<u>June</u> Solve	2006 qu.5 e each of the following equations, for $0^{\circ} \le x \le 180^{\circ}$.		
	(i)	$2\sin^2 x = 1 + \cos x.$	[4]	
	(ii)	$\sin 2x = -\cos 2x.$	[4]	
23.	June	<u>2006 qu.7</u>		
	The c and a It is g angle The s and t	liagram shows a triangle <i>ABC</i> , sector <i>ACD</i> of a circle with centre <i>A</i> . given that $AB = 11$ cm, $BC = 8$ cm, ABC = 0.8 radians and angle $DAC = 1.7$ radians. shaded segment is bounded by the line <i>DC</i> he arc <i>DC</i> .		
	(i)	Show that the length of AC is 7.90 cm, correct to 3 significant figures.	[3]	
	(ii)	Find the area of the shaded segment.	[3]	
	(iii)	Find the perimeter of the shaded segment.	[4]	
24.	<u>Jan 2006 qu.2</u> Triangle <i>ABC</i> has $AB = 10$ cm, $BC = 7$ cm and angle $B = 80^{\circ}$. Calculate			
	(i)	the area of the triangle, $[2]$ (ii) the length of <i>CA</i> ,	[2]	
	(iii)	the size of angle C.	[2]	

25. Jan 2006 qu.4

The diagram shows a sector OAB of a circle with centre O. The angle AOB is 1.8 radians. The points C and D lie on OA and OB respectively. It is given that OA = OB = 20 cm and OC = OD = 15 cm. The shaded region is bounded by the arcs AB and CD and by the lines CA and DB. Find the perimeter of the shaded region. (i) [3] Find the area of the shaded region. (ii) [3] Jan 2006 gu.9 Sketch, on a single diagram showing values of x from -180° to $+180^{\circ}$, the graphs of (i) $y = \tan x$ and $y = 4 \cos x$. [3] The equation $\tan x = 4 \cos x$ has two roots in the interval $-180^\circ \le x \le 180^\circ$. These are denoted by α and β , where $\alpha < \beta$. (ii) Show α and β on your sketch, and express β in terms of α . [3]

(iii) Show that the equation $\tan x = 4 \cos x$ may be written as $4 \sin^2 x + \sin x - 4 = 0$.

[6]

Hence find the value of $\beta - \alpha$, correct to the nearest degree.

27. June 2005 qu.2

26.

A sector *OAB* of a circle of radius *r* cm has angle θ radians. The length of the arc of the sector is 12 cm and the area of the sector is 36 cm² (see diagram).

(i)	Write down two equations involving r and θ .	[2]
(ii)	Hence show that $r = 6$, and state the value of θ .	[2]

(iii) Find the area of the segment bounded by the arc *AB* and the chord *AB*. [3]

In the diagram, *ABCD* is a quadrilateral in which *AD* is parallel to *BC*. It is given that AB = 9, *BC* = 6, CA = 5 and CD = 15.

(i) Show that
$$\cos BCA = -\frac{1}{3}$$
, and hence find the value of $\sin BCA$. [4]

(ii) Find the angle ADC correct to the nearest 0.1° .

[4]

29. June 2005 qu.9

(a)	(i)	Write down the exact values of $\cos \frac{1}{6}\pi$ and $\tan \frac{1}{3}\pi$ (where the angles are in	
		radians). Hence verify that $x = \frac{1}{6}\pi$ a solution of the equation $2 \cos x = \tan 2x$.	[3]

- (ii) Sketch, on a single diagram, the graphs of $y = 2 \cos x$ and $y = \tan 2x$, for x (radians) such that $0 \le x \le \pi$. Hence state, in terms of π , the other values of x between 0 and π satisfying the equation $2 \cos x = \tan 2x$. [4]
- (b) (i) Use the trapezium rule, with 3 strips, to find an approximate value for the area of the region bounded by the curve $y = \tan x$, the *x*-axis, and the lines x = 0.1 and x = 0.4. (Values of *x* are in radians.) [4]
 - (ii) State with a reason whether this approximation is an underestimate or an overestimate. [1]